Những câu hỏi liên quan
WTFシSnow
Xem chi tiết
Phạm Thành Đông
11 tháng 4 2021 lúc 23:41

\(A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\).

Ta có:

\(1-a=a+b+c-a\).(vì \(a+b+c=1\)).

\(\Leftrightarrow1-a=b+c\).

Chứng minh tương tự, ta được:

\(1-b=c+a\)\(1-c=a+b\). Do đó:

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(b+c\right)\left(c+a\right)\left(a+b\right)\).

Lại có:

\(1+a=a+b+c+a\)(vì \(a+b+c=1\)).

\(\Leftrightarrow1+a=\left(a+b\right)+\left(a+c\right)\).

Chứng minh tương tự, ta được:

\(1+b=\left(a+b\right)+\left(b+c\right)\)\(1+c=\left(a+c\right)+\left(b+c\right)\),.

Do đó \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(a+b\right)+\left(b+c\right)\right]\left[\left(a+c\right)+\left(b+c\right)\right]\)

Lúc đó: 

\(A=\frac{\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(a+b\right)+\left(b+c\right)\right]\left[\left(a+c\right)+\left(b+c\right)\right]}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\).

Đặt \(a+b=x,b+c=y,c+a=z\left(x,y,z>0\right)\) thì \(x+y+z=2\left(a+b+c\right)=2\). Lúc đó:

\(A=\frac{\left(x+z\right)\left(x+y\right)\left(z+y\right)}{yzx}\).

Vì \(x,y>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(x+z\ge2\sqrt{xz}\left(1\right)\).

Chứng minh tương tự, ta được:

\(x+y\ge2\sqrt{xy}\left(2\right)\);

\(z+y\ge2\sqrt{zy}\left(3\right)\).

Từ (1), (2), (3), ta được:

\(\left(x+z\right)\left(x+y\right)\left(z+y\right)\ge8\sqrt{xy.yz.zx}=8xyz\).

\(\Rightarrow\frac{\left(x+z\right)\left(x+y\right)\left(z+y\right)}{yzx}\ge\frac{8xyz}{xyz}=8\).

\(\Rightarrow A\ge8\).

Dấu bằng xảy ra.

\(\Leftrightarrow x=y=z>0\Leftrightarrow a+b=b+c=c+a>0\Leftrightarrow a=b=c>0\).

Mà \(a+b+c=1\)nên \(a=b=c=\frac{1}{3}\).

Vậy \(minA=8\Leftrightarrow a=b=c=\frac{1}{3}\).

Bình luận (0)
 Khách vãng lai đã xóa
Tạ Duy Phương
Xem chi tiết
luu thanh huyen
Xem chi tiết
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 16:11

\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)

\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)

Bình luận (2)
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 2 2021 lúc 16:39

\(\dfrac{1}{\left(1+\sqrt{ab}\sqrt{\dfrac{a}{b}}\right)^2}+\dfrac{1}{\left(1+\sqrt{ab}\sqrt{\dfrac{b}{a}}\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}=\dfrac{1}{1+ab}\)

Tương tự: \(\dfrac{1}{\left(1+c\right)^2}+\dfrac{1}{\left(1+d\right)^2}\ge\dfrac{1}{1+cd}\)

\(\Rightarrow B\ge\dfrac{1}{1+ab}+\dfrac{1}{1+cd}=\dfrac{1}{1+ab}+\dfrac{1}{1+\dfrac{1}{ab}}=\dfrac{1}{1+ab}+\dfrac{ab}{1+ab}=1\)

\(B_{min}=1\) khi \(a=b=c=d=1\)

Bình luận (0)
gãi hộ cái đít
28 tháng 2 2021 lúc 16:41

Áp dụng BĐT phụ ta có:

\(B\ge\dfrac{1}{1+ab}+\dfrac{1}{1+cd}=\dfrac{ab+cd+2}{1+ab+cd+abcd}=1\)

Vậy GTNN của B bằng 1 <=> a=b=c=d=1

Bình luận (0)
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 3 2022 lúc 21:48

\(P\ge3\sqrt[3]{\dfrac{abc\left(a^2+1\right)^2\left(b^2+1\right)^2\left(c^2+1\right)^2}{a^2b^2c^2\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}}=3\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{abc}}\)

\(P\ge3\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{\left(\dfrac{a+b+c}{3}\right)^3}}=9\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{\left(a+b+c\right)^3}}\ge9\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{2\left(a+b+c\right)^2}}\)

Theo nguyên lý Dirichlet, trong 3 số \(a^2;b^2;c^2\) luôn có ít nhất 2 số cùng phía so với \(\dfrac{4}{9}\)

Không mất tính tổng quát, giả sử đó là \(a^2;b^2\)

\(\Rightarrow\left(a^2-\dfrac{4}{9}\right)\left(b^2-\dfrac{4}{9}\right)\ge0\)

\(\Leftrightarrow a^2b^2+\dfrac{16}{81}\ge\dfrac{4}{9}a^2+\dfrac{4}{9}b^2\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\dfrac{13}{9}a^2+\dfrac{13}{9}b^2+\dfrac{65}{81}\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\ge\dfrac{13}{9}\left(a^2+b^2+\dfrac{5}{9}\right)\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{13}{9}\left(a^2+b^2+\dfrac{5}{9}\right)\left(c^2+1\right)\)

\(=\dfrac{13}{9}\left(a^2+b^2+\dfrac{4}{9}+\dfrac{1}{9}\right)\left(\dfrac{4}{9}+\dfrac{4}{9}+c^2+\dfrac{1}{9}\right)\)

\(\ge\dfrac{13}{9}\left(\dfrac{2}{3}a+\dfrac{2}{3}b+\dfrac{2}{3}c+\dfrac{1}{9}\right)^2\)

\(\Rightarrow P\ge9\sqrt[3]{\dfrac{\dfrac{13}{9}\left(\dfrac{2}{3}\left(a+b+c\right)+\dfrac{1}{9}\right)^2}{2\left(a+b+c\right)^2}}=9\sqrt[3]{\dfrac{13}{18}\left(\dfrac{2}{3}+\dfrac{1}{9\left(a+b+c\right)}\right)^2}\)

\(P\ge9\sqrt[3]{\dfrac{13}{18}\left(\dfrac{2}{3}+\dfrac{1}{9.2}\right)^2}=\dfrac{13}{2}\)

\(P_{min}=\dfrac{13}{2}\) khi \(a=b=c=\dfrac{2}{3}\)

Bình luận (3)
Nguyễn Việt Lâm
19 tháng 3 2022 lúc 15:08

Từ giả thiết \(2\ge a+b+c\ge3\sqrt[3]{abc}\Rightarrow\sqrt[3]{abc}\le\dfrac{2}{3}\)

\(P\ge3\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{abc}}\)

Đặt \(Q=\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{abc}\)

\(=\dfrac{a^2b^2c^2+\left(a^2b^2+b^2c^2+c^2a^2\right)+\left(a^2+b^2+c^2\right)+1}{abc}\)

\(\ge\dfrac{a^2b^2c^2+3\sqrt[3]{\left(a^2b^2c^2\right)^2}+3\sqrt[3]{a^2b^2c^2}+1}{abc}=\dfrac{\left(\sqrt[3]{a^2b^2c^2}+1\right)^3}{abc}\)

\(=\left(\dfrac{\sqrt[3]{a^2b^2c^2}}{\sqrt[3]{abc}}+\dfrac{1}{\sqrt[3]{abc}}\right)^3=\left(\sqrt[3]{abc}+\dfrac{1}{\sqrt[3]{abc}}\right)^3\)

\(=\left(\sqrt[3]{abc}+\dfrac{4}{9\sqrt[3]{abc}}+\dfrac{5}{9\sqrt[3]{abc}}\right)^3\ge\left(2\sqrt[]{\dfrac{4\sqrt[3]{abc}}{9\sqrt[3]{abc}}}+\dfrac{5}{9.\dfrac{2}{3}}\right)^3=\dfrac{2197}{216}\)

\(\Rightarrow P\ge3\sqrt[3]{\dfrac{2197}{216}}=\dfrac{13}{2}\)

Bình luận (0)
Trần Thùy
Xem chi tiết
pham trung thanh
20 tháng 11 2018 lúc 9:25

\(\frac{1}{a^4\left(1+b\right)\left(1+c\right)}=\frac{1}{\frac{a^4\left(1+b\right)\left(1+c\right)}{abc}}=\frac{\frac{1}{a^3}}{\left(\frac{1}{b}+1\right)\left(\frac{1}{c}+1\right)}\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\), tương tự suy ra:

\(A=\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)

Theo BĐT AM-GM ta có: \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)

Tương tự suy ra \(A+\frac{3}{4}+\frac{x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)

\(\Rightarrow A\ge\frac{x+y+z}{2}-\frac{3}{4}\ge\frac{3\sqrt[3]{xyz}}{2}-\frac{3}{4}=\frac{3}{4}\)

Dấu = xảy ra khi x=y=z=1 hay a=b=c=1

Bình luận (0)
Trần Thùy
20 tháng 11 2018 lúc 9:35

VỚi các số thực: a,b,c >0 thỏa a+b+c=1. Chứng minh rằng: \(\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\le2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

Help me

Bình luận (0)
Nguyễn Minh Toàn
Xem chi tiết
Thanh Tùng DZ
11 tháng 6 2019 lúc 22:10

a + b + c= 1 \(\Rightarrow\)1 - a = b + c > 0

Tương tự : 1 - b > 0 ; 1 - c > 0

Mà 1 + a = 1 + ( 1 - b - c ) = ( 1- b ) + ( 1 - c ) \(\ge\)\(2\sqrt{\left(1-b\right)\left(1-c\right)}\)

Tương tự : \(1+b\ge2\sqrt{\left(1-a\right)\left(1-c\right)}\)\(1+c\ge2\sqrt{\left(1-a\right)\left(1-b\right)}\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\sqrt{\left(1-a\right)^2\left(1-b\right)^2\left(1-c\right)^2}=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(\Rightarrow A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\ge8\)

Dấu " = : xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Vậy GTNN của A là 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Bình luận (0)
tth_new
12 tháng 6 2019 lúc 8:49

Cách khác:

\(A=\frac{\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(b+c\right)+\left(b+a\right)\right]\left[\left(c+a\right)+\left(c+b\right)\right]}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Áp dụng BĐT Cô si cho 2 số ta được:

\(A\ge\frac{8\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=8\)

"=" <=> a = b = c = 1/3

Kết luận..

Bình luận (0)
Fairy Tail
Xem chi tiết